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Abstract
We continue the study of a special entry in the AdS/CFT dictionary, namely
a holographic formula relating the functional determinant of the scattering
operator in an asymptotically locally anti-de Sitter space to a relative functional
determinant of the scalar Laplacian in the bulk. A heuristic derivation of the
formula involves a one-loop quantum effect in the bulk and the corresponding
sub-leading correction at large N on the boundary. We presently explore the
formula in the background of a higher dimensional version of the Euclidean
BTZ black hole, obtained as a quotient of hyperbolic space by a discrete
subgroup of isometries generated by a loxodromic (or hyperbolic) element
consisting of dilation (temperature) and torsion angles (twist). The bulk
computation is done using heat-kernel techniques and fractional calculus. At
the boundary, we acquire a recursive scheme that allows us to successively
include rotation blocks in spacelike planes in the embedding space. The
determinants are compactly expressed in terms of an associated (Patterson–)
Selberg zeta function and a connection to quasi-normal frequencies is discussed.

PACS numbers: 04.62.+v, 11.10.Wx, 03.65.Db

1. Introduction

The AdS/CFT correspondence has been a very productive area of research ever since its
appearance, more than a decade ago, in the form of Maldacena’s conjecture together with
a calculational prescription [1–3]. Many developments are, perhaps more appropriately,
embraced under the name gauge/gravity duality for they depart from the original canonical
examples that involved anti-de Sitter spacetime and the bulk side is usually restricted to
the (super)gravity approximation. On the one hand, these canonical (or most symmetric)
cases seem to be grounded in solid mathematical foundations, such as harmonic analysis on
symmetric spaces [4], representation theory [5], and hyperbolic and conformal geometry [6].
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On the other hand, recent and exciting applications to physically relevant situations (see e.g.
[7, 8]) are more heuristic, and therefore mathematically exact results become rare. This starts
already when including finite temperature on the boundary theory, leading to AdS black holes
as bulk background geometry.

One notable exception is the BTZ black hole [9, 10]. While having essentially the
same standard features of higher dimensional AdS black holes, its virtue of being a space of
constant negative curvature greatly simplifies many derivations (cf [11]). Here one can include
temperature and still obtain explicit analytic results for the Green’s functions, spectrum of
quasi-normal modes etc, and several holographic features have a mathematical counterpart
[12, 13].

Another instance that transcends its original frame is the case of a holographic formula
relating the functional determinant of the scattering operator in an asymptotically locally anti-
de Sitter (ALAdS) space to a relative functional determinant of the scalar Laplacian in the bulk.
The conformal anomaly at the boundary at leading large N can be read from the regularization
of the classical gravitational action; a quantum correction to this classical gravitational action
such as the one-loop contribution of a scalar field corresponds to a sub-leading effect at the
boundary. This was confirmed in [14, 15]. However, the mapping can be further extended to
an equality between functional determinants [16, 17], namely

det−(�X − λ(n − λ))

det+(�X − λ(n − λ))
= det SM(λ), (1)

where �X is the Laplacian operator in the bulk and SM(λ) stands for the Euclidean two-point
correlation function of the boundary operator Oλ dual to the bulk scalar field �. The label ‘+’
refers to the usual determinant, obtained for example via heat kernel techniques, whereas the
label ‘−’ refers to the analytic continuation from λ to n − λ.

In this work, we bring together these two instances to explore the holographic formula in
a generalized BTZ geometry. This has been previously done for thermal AdS and for a related
BTZ geometry [18], but we realize that the bulk computation can be readily extended to the
more general case covered by a result due to Patterson [19] in terms of an associated Selberg
zeta function for the resulting BTZ geometry that combines dilation with twist in an internal
sphere. The challenge we presently undertake is to elucidate how this general result can be
recovered on the boundary.

Regarding the ‘separate lives’ of each side of the holographic formula, a few remarks
are worth mentioning. The functional determinant on the bulk side is the central object when
computing one-loop effective actions1. For example, in BTZ3 the effective action had been
computed by Mann and Solodukhin [21], and later Perry and Williams noticed a connection
with the Selberg zeta function. The functional determinant on the boundary, in turn, involves
a pseudo-differential operator and has been less explored in the physics literature; however,
it is related to conformal powers of the Laplacian (cf [17]) and one can find a connection
with the Selberg zeta function in multi-loop amplitudes for the bosonic string [22]. AdS/CFT
correspondence, via the holographic formula in BTZ3, connects these two a priori unrelated
computations.

The outline of this paper is as follows. The quotient geometry and a general ansatz for
the bulk metric is reviewed in the next section. The computation of the determinant on the
rhs of the holographic formula, using a particular parametrization of the compact boundary,
is performed in section 3. For completeness, a new derivation of the result by Patterson

1 As mentioned, one-loop corrections correspond to sub-leading terms in the large-N expansion on the boundary and
any refinement of the holographic correspondence to include them leads to such bulk determinants. This opens the
possibility of finding interesting effects in strongly coupled field theories, not captured by the leading order, as in
[20].
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for the lhs, using this time heat-kernel and fractional calculus, is included in section 4. As
an application of the general results of the previous sections, the holographic nature of the
determinant of the Laplacian on the torus is illustrated in section 5. Section 6 elaborates on
properties of the Selberg zeta function to elucidate a connection with quasi-normal frequencies
and with Barnes’ multiple zeta and gamma functions. Section 7 includes concluding remarks
and perspectives. Four appendices provide some supplementary material.

2. Quotient geometry

The existence of the BTZ solution in the form of a quotient in three dimensions streamed
out the search for higher dimensional analogs [23–26]. Indeed, one can foresee, by the rich
geometrical structure of the negative curvature manifolds such as AdSd [27], the presence of
interesting solutions of the form �\AdS∗

d , where AdS∗
d is a section of AdSd and � is a discrete

subgroup of the AdS isometry group. A classification of the possible identifications can be
found in [28, 29] and references therein. Locally, these spaces can be written as

ds2 = B(r)2(dx̂i dx̂j ĝij ) + C(r)2 dr2 + A(r)2(dỹm dỹng̃mn), (2)

where ĝij and g̃mn are intrinsic metrics of two constant curvature manifolds, hereinafter referred
to as worldsheet and transverse section, respectively.

The functional determinants in this paper, however, require the Euclidean formulation.
The bulk space is then locally asymptotically hyperbolic and the conformal boundary is
a compact Riemannian manifold. The quotients to be considered can be described in the
Poincaré half-plane,

ds2 = dz2 + d
−→
x

2

z2
, (3)

with the identification � generated by a hyperbolic element of the discrete group of isometries
whose action is

(z,
−→
x ) ∼ el (z, A

−→
x ). (4)

Here A is a twist or rotation, which can be cast in block form with eigenvalues e±iϕk with
k = 1, . . . , K � �n/2�2 and an extra unit eigenvalue in case n is odd. In geometric terms,
to cast A in block form is equivalent to reduce the rotations to planes that do not intersect,
and thus k also labels the different planes where the rotations occur. If A is trivial then the
transverse section in equation (2) corresponds to a sphere. Otherwise the transverse section
and worldsheet are intertwined manifolds.

In order to classify this identification [28] one can note that equation (4) is generated by
the Killing vector

ξBTZ = l

(
z

∂

∂z
+ xi ∂

∂xi

)
+

�n/2�∑
k=1

ϕk

(
xk1

∂

∂xk2
− xk2

∂

∂xk1

)
, (5)

where the last part of the vector stands for the sum of the generators of a rotation in each of
the (xk1 , xk2) planes.

There are several known examples. For instance one can quote [30] whose line element
for the Euclidean section is given by

ds2 = N(r)2 d	3 + N(r)−2 dr2 + r2 dφ2, (6)

2 �α� stands for the largest integer smaller than or equal to α.
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with N2(r) = r2 − r2
+ and

d	3 = cos2 θ dτ 2 +
1

r2
+

(dθ2 + sin2 θ dχ2). (7)

The horizon in these coordinates is located at r = r+. In this case the identification is performed
along the Killing vector (B.3):

ξ = 2πr+
∂

∂φ
= 2πr+

(
w

∂

∂p
+ p

∂

∂w

)
= 2πr+

(
z

∂

∂z
+ yi ∂

∂yi

)
, (8)

where the coordinates w and p are defined in appendix A. In terms of the general identification
(equation (4)) this corresponds to the case A trivial, i.e. no twist at all.

The continuation to Lorentzian signature in general yields regular as well as black hole
spacetimes. In [28] it is argued that only the non-spinning BTZ black hole has a generalization
to higher dimensions. This translates into a dilation combined with a rotation in the spatial
planes in the embedding space, which restrict the entries of the matrix A. These issues,
though important and somewhat controversial, are not essential to our present discussion in
the Euclidean context and we keep a generic rotation matrix.

3. Boundary

Let us start with the functional determinant on the boundary. We first need to compute the
two-point correlation function of the dual operator with scaling dimension λ. A useful way to
get this information is to examine the scattering of the bulk field in the locally asymptotically
hyperbolic background.

3.1. Scattering

The metric is first suitable written in the ‘scattering form’

gX = dt2 + ch2t du2 + sh2t d�2
n−1, (9)

so that the (positive) Laplacian takes the following form:

�X = − 1

cht shn−1t
∂t (cht shn−1t∂t ) − 1

ch2t
∂2
u − 1

sh2t
��. (10)

One has to consider eigenfunctions of the form eiκu × {angular part}, compatible with the
identifications. For instance, when there is no mixing κ = 2πN/l, N ∈ Z, with only one
block, κ = 2πN/l±rϕ/l and so on. This leads then to an effective one-dimensional operator

ĤL,κ = − 1

cht shn−1t
dt (cht shn−1tdt ) + κ2 sech2t + γ 2

L csch2t, (11)

where γ 2
L = L(L + n − 2) are the eigenvalues of the angular part. Here one can recognize a

one-dimensional stationary Schrödinger equation with a (generalized) Pöschl–Teller potential

HL,κ = −d2
t + α(α + 1)csch2t − β(β + 1)sech2t (12)

with α = −3/2 + n/2 + L and β = −1/2 + i|κ|.
The scattering matrix [31] with the spectral parameter λ(n − λ) (here λ ≡ n/2 + ν) is

known to be given, modulo unimportant factors, by

SL,κ(λ) = �(L/2 + n/4 + ν/2 + iκ/2) �(L/2 + n/4 + ν/2 − iκ/2)

�(L/2 + n/4 − ν/2 + iκ/2) �(L/2 + n/4 − ν/2 − iκ/2)
. (13)

These are the coefficients of the expansion of the scattering operator, or thermal two-point
correlation function, in the chosen basis.
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3.2. Sphere: eigenfunctions

As a technical prelude, one has to construct eigenfunctions of the Laplacian on the (p +q + 1)-
sphere out of the usual harmonics for the p- and q-sphere. This is very similar to what we had
before for the bulk metric in the scattering form

ds2 = dθ2 + cos2 θ d�2
p + sin2 θ d�2

q, (14)

with the Laplacian

��p+q+1 = 1

cosp θ sinq θ
∂θ (cosp θ sinq θ∂θ ) +

1

cos2 θ
��p

+
1

sin2 θ
��q

. (15)

Plugging in the eigenvalues of the spherical harmonics for the little spheres (orbital quantum
numbers r and s) we end up with an effective one-dimensional equation which can be eventually
related to Jacobi polynomials of orders m = 0, 1, 2, . . . . The relation with the orbital quantum
number L of the (p + q + 1)-sphere is L = 2m + r + s. Here one can check that the counting
of states and degeneracies agree.

3.3. Adding internal rotations: one block

The functional determinant we need to compute on the boundary can be cast as a trace

log det S = tr log S =
∑

eigenstates

log SL,κ . (16)

Now consider one rotation block. Following essentially the same steps as in the pure dilation
case [18], i.e. taking derivative and using an integral representation of the gamma function,
we write for the derivative of log-det of the scattering operator

tr(S−1∂λS(λ)) = −
∑

eigenstates

∫ ∞

0
dt

e−tL/2−itκ/2

1 − e−t
(e−λt/2 + e(λ−n)t/2), (17)

but now κ = 2πN/l ± rϕ/l depends not only on N but also on the orbital quantum numbers
on the S1 and Sn−3. The Sn−1 is decomposed into an S1, an Sn−3 and a polar angle θ , so that
L = 2m + r + s. The trick is to sum over m, r, s = 0, 1, 2, 3, . . . , taking into account the
degeneracies

∞∑
N=−∞

e−iπNt/l

∞∑
m=0

e−tm

(
1 +

∞∑
r=1

e−rt/2[eirϕt/2l + e−irϕt/2l]

) ∞∑
s=0

e−st/2 deg(n − 3, s).

(18)

Now, sum up and again use Poisson summation to write in terms of deltas and take
the integral, just as in [18]. The indirect contributions to the trace are then collected in the
following result:

tr′(S−1∂λS(λ)) = −2l

∞∑
N=1

e−λlN + e(λ−n)lN

|1 − e−lN+iϕN |2 × (1 − e−lN )n−2
. (19)

3.4. Full rotation matrix A

In case there is yet another block, one just has to replace the sum on the (n − 3)-sphere in
the very same way we did to add one block. That is, in the last factor of the trace formula
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(equation (18)),
∞∑

s=0

e−st/2 deg(n − 3, s) →
∞∑

m′=0

e−tm′
(

1 +
∞∑

r ′=1

e−r ′t/2[eir ′ϕ′t/2l + e−ir ′ϕ′t/2l]

)

×
∞∑

s ′=0

e−s ′t/2 deg(n − 5, s ′). (20)

Each sphere is being decomposed into smaller ones, just as nesting dolls or matryoshkas.
Successive applications of this procedure finally lead to the expression for K blocks:

tr′(S−1∂λS(λ)) = −2l

∞∑
N=1

e−λlN + e(λ−n)lN

|1 − e−lN+iϕ1N |2 . . . |1 − e−lN+iϕKN |2(1 − e−lN )n−2K
,

(21)

which is precisely the bulk result, as we will see,

1

2
tr′(S−1∂λS(λ)) = Z′

�

Z�

(λ) +
Z′

�

Z�

(n − λ), (22)

or, integrating,

det′S(λ) = [Z�(n − λ)/Z�(λ)]2 . (23)

4. Bulk

For completeness, we examine the bulk side in order to parallel the boundary computation.
The relative functional on this side of the correspondence can also be cast as a trace:

log
det−(�X − λ(n − λ))

det+(�X − λ(n − λ))
= tr− log(�X − λ(n − λ)) − tr+ log(�X − λ(n − λ)). (24)

We focus on the standard +branch, take the derivative with respect to λ and compute in terms
of the (truncated) heat kernel representation for the Green’s function subtracting the direct
contribution given by the Green’s function for the original hyperbolic space. The trace here
means taking the coincidence-point limit and integrating over the fundamental domain, so that

(2λ − n) tr (G+
X − G+

H ) = (2λ − n)

∫ ∞

0
ds tr K ′

X(σ, s) esλ(n−λ). (25)

The idea is to apply the method of images to compute the coincidence limit of the Green’s
function, that is, to sum up the contributions from image points. We start with the heat kernel
for the (positive) Laplacian exp(−t �H ) in hyperbolic space H

N+1 which can be compactly
written in terms of Weyl’s fractional derivative [32]:

Kn+1 = e−tn2/4

(2π)n/2
·

x
W

n
2

∞ [K1] . (26)

It is convenient to write it as a function of x = ch σ , where σ is the geodesic distance, so that
x − 1 is the chordal distance on the embedded hyperboloid (equation (B.1)). The input is the
heat kernel on the line K1 = 1

(4πt)1/2 e−σ 2/4t . Now, the geodesic distance between a point (z, �x)

in the fundamental region and its mth image under the identification (zm, �xm) = eml (z, A
m · �x)

satisfies

chσ(z, �x | zm, �xm) = z2(1 + e2ml) + |(I − eml
A

m) · �x|2
2z2 eml

. (27)
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The fundamental region can be taken as 1 � z � el with the volume element dn�x dz/zn+1 and
we just need the volume integral of a function of the geodesic distance between image points
in order to take the trace of the heat kernel.

We proceed in two steps. First, change variables

�x → �x − �xm ≡ �ym = (I − eml
A

m) · �x (28)

with Jacobian ∂�ym

∂�x = I − eml
A

m. Second, change variables again

ym → chσm = z2(1 + e2ml) + y2
m

2z2 eml
. (29)

The volume integral of a function of u ≡ chσm then becomes∫
dvolX• =

∫ el

1

dz

zn+1

∫ ∞

0
dym yn−1

m vol(Sn−1)

∥∥∥∥∂�ym

∂�x
∥∥∥∥−1

•

=
∫ el

1

dz

zn+1

∫ ∞

0
dym yn−1

m vol(Sn−1)

∥∥∥∥∂�ym

∂�x
∥∥∥∥−1

•

= 2n/2−1emln/2 vol(Sn−1) |det(I − eml
A

m)|−1

×
∫ el

1

dz

z

∫ ∞

chml

du (u − chml)n/2−1 • . (30)

Here we note that the last expression is nothing but Weyl’s fractional integral of order
n/2, so that the volume integral of a function which only depends on the geodesic distance
between image points can be cast into the following convenient form:

2n/2−1lemln/2 vol(Sn−1) |det(I − eml
A

m)|−1�
(n

2

)
·

ch ml
W− n

2
∞ [ • ]. (31)

Inserting the heat kernel for the quotient space, obtained by summing over image locations,
the composition of fractional integral and derivative easily gives the indirect contributions to
the trace of the heat kernel:

tr′ e−t�X = l
∑

m∈Z,m�=0

emln/2 |det(I − eml
A

m)|−1 1

(4πt)1/2
e−tn2/4−(ml)2/4t . (32)

To get the trace of the Green’s function, i.e. of the resolvent, it remains to take the proper-
time integral. After straightforward manipulations and subtracting the analytically continued
result from λ+ = λ to λ− = n − λ, we finally have

(2λ − n) tr′
[
G+

X − G−
X

] = −2l

∞∑
m=1

e−λml + e(λ−n)ml

|det(I − emlAm)|−1
, (33)

which is one of the many ways to express the log-derivative of the corresponding Selberg zeta
function (cf appendix C):

(n − λ/2) tr′
[
G+

X − G−
X

] = Z’�
Z�

(λ) +
Z’�
Z�

(n − λ). (34)

In terms of the determinants, the result is compactly expressed as

det′−(�X − λ(n − λ))

det′+(�X − λ(n − λ))
= [Z�(n − λ)/Z�(λ)]2 . (35)

7
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4.1. Renormalized volume and Euler characteristic

The prime on the determinants and traces above means that one has excluded the direct
contribution, that is, the term containing the volume of the fundamental region in the bulk.
This term requires renormalization, very much like in the exact hyperbolic case [17]. A
renormalized version of the trace involves the renormalized volume V and its anomaly L
under conformal rescaling with the very same coefficients as in the exact hyperbolic case [17]
and reads

tr
(
G+

H − G−
H

) = An · V + Bn · L. (36)

There are some general results on the geometric entries V and L that apply in the locally
conformally flat case that is considered here (cf the appendix by Epstein in [33]). When
n = odd, L is always absent. The renormalized volume vanishes (appendix D), consistent
with the connection with the Euler characteristic χ of the conformally compactified bulk
manifold X̄, which vanishes in this case because the manifold can be shrunk to a circle. When
n = even, in general, the renormalized volume is not conformal invariant and has an anomaly
L, but in our case L vanishes, consistent again with the vanishing Euler characteristic of
X̄, and the renormalized volume also vanishes in dimensional regularization with a minimal
subtraction prescription (appendix D). There is, however, an important caveat concerning the
arbitrariness of this subtraction: the ambiguity in this renormalized value V is reflected in the
holographic formula as an exponential term in front of the zeta factors

exp

{
−V ·

∫ ν

0
dν̃ 4ν̃ An(ν̃)

}
. (37)

In all, sticking to dimensional regularization with a minimal subtraction prescription, the
direct contribution vanishes and we can drop the primes in all previous formulas.

5. BTZ and the Laplacian on the torus

As an illustration of the riches of the holographic formula, let us consider a classical result in
the literature, namely, the determinant of the (scalar) Laplacian on the (two-) torus [34, 35],
a crucial ingredient in the one-loop string amplitude resulting from the contributions of all
closed surfaces with the topology of the torus to Polyakov’s path integral. The determinant,
computed by Ray and Singer and later by Polchinski using standard ζ -regularization, reads

det′�g = e−πτ2/3τ 2
2

∞∏
k=1

|1 − e2π ikτ |4, (38)

where the prime means omission of the zero mode and τ ≡ τ1 + iτ2 = θ
2π

+ i l
2π

is the modular
parameter of the torus. We will identify the holographic nature of each term in the above
result. The exponential terms will be traced back to the renormalized volume of BTZ and the
rest will result from the Selberg zeta factors.

5.1. GJMS and zero mode

First thing to note is the connection with GJMS operators (cf [36]). In the present case n = 2
and when ν → 1 (equivalently, λ → 2) the determinant of the scattering operator produces
that of the first GJMS operator, i.e. the conformal Laplacian which in two dimensions is simply
the Laplacian on functions. But the Laplacian has a zero mode coming from constant functions
on the torus; therefore, one obtains a vanishing result in the limit unless the contribution from

8
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this zero mode is excluded. It is easy to see from the elements of the scattering operators that
the zero mode comes from the term L = κ = 0 in (13) and (16):

S0,0(λ) = �2(1/2 + ν/2)

�2(1/2 − ν/2)
(39)

as ν → 1. The other matrix elements become the eigenvalues κ2 + L2 of the Laplacian on the
torus3. In higher dimensions, one obtains the eigenvalues of the conformal Laplacian instead.

5.2. Indirect contributions

The nontrivial determinant is therefore reached in the limit (ν ≡ 1 − ε)

det′�g = lim
ε→0

det ST (2 − ε) · �2(ε/2) = lim
ε→0

[
Z�(ε)

Z�(2)

]2

· �2(ε/2). (40)

Using the fact that Z�(0) = 0, it is easy to recognize the derivative of the Selberg zeta function
and a simple computation renders the following result:

det′�g = 4

[
Z′

�(0)

Z�(2)

]2

= (2l)2
∞∏

k=1

|1 − e−kl+ikθ |4 . (41)

Modulo an unimportant numerical actor (4π)2, we get the second and third terms of the
ζ -regularized determinant. The first term is still unaccounted for, but we will immediately see
its origin.

5.3. Direct contribution and renormalization

We have to recall the discussion in (4.1). The exponential term in the ζ -regularized determinant
comes from the term (37) with a choice of renormalized volume that coincides with the one
obtained via the Hadamard or Riesz renormalization V = −πl/2 (D.6). The coefficient is

−
∫ 1

0
dν 4νA2(ν) = 1

π

∫ 1

0
dν ν2 = 1

3π
, (42)

so that the direct contribution is responsible for the first term

e−l/6 = e−πτ2/3 (43)

and the holographic description is completed.

6. Weierstrass regularization and quasi-normal frequencies

Recently, a related holographic recipe has been given to compute the Euclidean bulk
determinant in terms of the spectrum of quasi-normal modes [37]. We will illustrate the
connection to the holographic formula by examining the concrete example of BTZ3.

Let us recall the expression for the holographic formula that we get in this case:

det−(�BTZ − λ(2 − λ))

det+(�BTZ − λ(2 − λ))
= det ST (λ) =

[
ZBTZ(2 − λ)

ZBTZ(λ)

]2

. (44)

3 In fact, these are the eigenvalues of the positive Laplacian modulo a factor 1/4 which is unimportant because the
counting function vanishes in dimensional regularization (cf [17]).
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The conformal boundary is a two-torus T with a parallelogram as a fundamental domain,
described by a Teichmüller parameter, and ZBTZ is the Selberg zeta function attached to the
BTZ geometry by Perry and Williams [31],

ZBTZ(λ) =
∏

k1,k2�0

[
1 − α

k1
1 α

k2
2 e−(k1+k2+λ)l

]
, (45)

with α1 = eiθ and α2 = e−iθ . The relation to the standard parametrization of the spinning
BTZ3 [10] is given by

l = 2πr+ and θ = 2π |r−|. (46)

It is direct to see that the set of zeros of ZBTZ(λ) is given by

R =
{
ζk1,k2,m = −(k1 + k2) + i(k1 − k2)θ + 2iπ

m

l

}
(47)

with k1,2 ∈ N0 and m ∈ Z. However, the nontrivial observation [31, 33] is that the set of the
poles of the scattering operator (equation (13)),

R′ =
{
sm,N,j = −2j − |m| ± i

2πN − mθ

l

}
, (48)

with j ∈ N0 and N,m ∈ Z, exactly matches the set in equation (47). This can be referred to
as rudiments of holography.

The Selberg zeta function ZBTZ has therefore a Hadamard product representation [31],
which can be thought of as a Weierstrass-regularized [38] version of the product of zeros,

ZBTZ(λ) = eQ(λ)
∏
ζ∈R

(1 − λ/ζ ) eλ/ζ+ 1
2 (λ/ζ )2+ 1

3 (λ/ζ )3
, (49)

where Q is a polynomial of degree at most three with finite coefficients. But due to the matching
R = R′, one concludes then that the holographic formula produces a Weierstrass-regularized
product of scattering resonances.

Now we come to the recipe in [37] and to their main observation that, for the non-spinning
BTZ3, the set of scattering resonances can be rephrased as Matsubara plus quasi-normal
frequencies. To see this, recall the spectrum of quasi-normal frequencies for a real scalar field
in the non-spinning BTZ black hole:

ωQN = N − il(λ + 2j)/2π. (50)

Note then that for the Euclidean version of the non-spinning BTZ3

λ − sm,N,j = λ + 2j + 2π iN/l + |m| = |m| + 2π iωQN/l, (51)

so that the naive product of resonances can be rewritten in terms of the quasi-normal frequencies
as follows: ∏

ζ∈R
(λ − ζ ) =

∏
s∈R′

(λ − s) =
∏

Matsubara,QN

(|m| + 2π iωQN/l). (52)

The partial product over m ∈ Z (Matsubara frequencies) can be regularized using the gamma
function, and the product can be cast as a product over quasi-normal frequencies of gamma
functions; however, the resulting expression is ill-defined because the infinite product is still
divergent.

The proposal in [37] is for the Euclidean determinant in the bulk, whereas the
holographic formula gives the answer with respect to a reference (the continuation
to n − λ). The computation of the separate determinants in the bulk requires the
regularization/renormalization of the UV divergence in the bulk, which was bypassed by the

10
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holographic formula that matches IR in the bulk to UV on the boundary. Now, some caution
must be taken in trying to separate the pieces of the holographic formula. The situation is in
fact very reminiscent to the computation of the scalar field exchange Witten graph in the early
days of AdS/CFT correspondence. The duality naturally gives an expression for the difference
of exchange graphs involving bulk-to-bulk propagators for λ and n−λ which matches exactly
the difference of the conformal partial waves of the dual operator with scaling dimension λ

and its conjugate with n − λ. Initially, assuming analyticity, each exchange amplitude and
the corresponding conformal partial wave were claimed to be identical [39]; however, the
presence of logarithmic terms that spoiled the identification was later realized [40].

An expression in terms of quasi-normal frequencies is appealing because it can be extended
beyond the exact cases considered here, but the scattering resonances seem to play the central
role. In the spinning BTZ3, where the temperature circle gets mixed with other directions, the
connection between quasi-normal frequencies and scattering resonances becomes obscured,
and we believe that the last ones are more directly connected with the Euclidean determinant.

A final remark concerning the exact cases is considered here. The Weierstrass
regularization is a prescription to render the products of resonances finite and produces the
Selberg zeta function. This can be achieved invoking Barnes’ zeta function (cf [41]) and the
determinant, roughly exp{−ζ ′(0)}, is naturally expressed in terms of Barnes’ multiple gamma
function (cf [41]). The holographic formula then suggests a nontrivial relation between the
(Patterson–)Selberg zeta functions and Barnes’ multiple gammas, which in fact has been
established by other routes (equation (6.4) in [41])4.

7. Conclusion

In this paper we have verified the holographic formula for bulk geometries obtained by
identifications in the hyperbolic space which combine dilation with internal rotations. The
quotient geometries include the Euclidean section of the higher dimensional generalization
of the non-spinning BTZ black hole and the functional determinants are expressed in term of
the associated Selberg zeta function. A connection with quasi-normal frequencies has been
elucidated and it seems very likely that these functional determinants can be written in terms
of the Selberg zeta function for all cases where the spectrum of quasi-normal frequencies
is explicitly known. The existence of quasi-normal modes for spinor, vector and tensor
excitations in the bulk strongly suggests that there must be suitable versions of the holographic
formula relating one-loop bulk determinants to those of the corresponding boundary two-point
functions.

The exact expressions in terms of the Selberg zeta function, more than just a mathematical
curiosity, are suitable to analytically explore the low- and high-temperature regimes, on the
one hand. On the other hand, much of the work done using WKB approximation in cases
that deviate from the exact ones considered here, should correspond to the transition from the
Selberg zeta function and trace formula to a semiclassical zeta function and Gutzwiller trace
formula (cf [42]).

Finally, let us mention a newly found gauge–gravity relation between the one-loop
effective action for a charged scalar in a maximally symmetric background electromagnetic
field and the one-loop effective action for a spinor in Euclidean AdS [43]. It is known that
on the gauge side, Barnes’ zeta and gamma functions arise in less symmetric situations.
Now, we have argued that there must be a corresponding holographic formula for spinors and
the Selberg zeta function should play a central role; therefore, the connection with Barnes’

4 We are indebted to E Friedman for clarification of this point. Further elaboration will be presented somewhere else.
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functions strongly suggests that the backgrounds considered in this paper are natural candidates
for the gravitational counterpart of these less symmetric electromagnetic backgrounds or to
their finite-temperature versions.
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Appendix A. Constant curvature spaces

In general a constant curvature space can be written in terms of

ds2 = B(ρ)2(êi êj ηij ) + C(ρ)2 dρ2 + D(ρ)2(ẽmẽnηmn), (A.1)

or in terms of the vielbein

ei = B(ρ)êi

er = C(ρ) dρ

en = D(ρ)ẽn.

Since this is a torsion-free solution, T a = 0; therefore, the connection is given by

wij = ŵij

wir = B(ρ)′

C(ρ)B(ρ)
ei

wmr = D(ρ)′

C(ρ)D(ρ)
em

wmn = w̃mn,

and so the curvatures are completely determined by the intrinsic curvatures as

Rij = R̂ij −
(

ln(B(ρ))′

C(ρ)

)2

ei ∧ ej

Rir = − 1

B(r)C(r)

(
B(ρ)′

C(ρ)

)′
ei ∧ er

Rim = − ln(B(r))′ ln(D(ρ))′

C(ρ)2
ei ∧ em

Rrm = − 1

A(r)C(r)

(
D(ρ)′

C(ρ)

)′
er ∧ em

Rmn = R̃mn −
(

ln(D(ρ))′

C(ρ)

)2

em ∧ en.

This solution has still the invariance of the definition of the ρ coordinate. By fixing
C(ρ) = l(2ρ)−1, as in the usual Fefferman–Graham coordinates, the constant curvature
solution, i.e. R̄ab = Rab + l−2eaeb = 0, is given by

B(ρ) = l
√

2

4
√

ρβ(c1 − c2)
(ρ(c1 − c2) + 2)

D(ρ) = l
√

2

4
√

ρα(c2 − c1)
(ρ(c2 − c1) + 2)
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where the intrinsic curvatures are given by

R̂ij = − 1

β
êi êj and R̃mn = − 1

α
ẽmẽn

with α = −β = ±1 and c1 and c2 are constant to be determined.

Appendix B. From the quadratic line element to Poincaré coordinates

In order to write explicitly the identifications defined by equation (4), it is useful to write the
quadratic form

−p2 + w2 + (u1)2 + · · · + (ud−1)2 = −1. (B.1)

The Poincaré coordinate set for Hd arises from

p = 1

2z
(z2 + (y1)2 + · · · + (yd) + 1)

w = 1

2z
(z2 + (y1)2 + · · · + (yd) − 1)

yi = ui

2z

with i = 1, . . . , d − 1. The Poincaré half-plane is therefore described by

ds2 = 1

z2
(dz2 + δij dyi dyj ) (B.2)

reproducing equation (3).
In this coordinates the boost in the plane w,p, generated by the Killing vector

ξ = w
∂

∂p
+ p

∂

∂w
, (B.3)

is given by

ξ = z
∂

∂z
+ yi ∂

∂yi
.

Obviously the generator g = elξ represents a dilatation in equation (B.2). On the
other hand, one can note that the set of all rotation that commute among themselves
and with ξ is given, up to some global rotation, by rotations in each of the planes
(uk1 , uk2) = {(u1, u2), (u3, u4), . . . , (uj−1, uj )}, with j the integer part of (d − 1)/2. These
rotations are generated by

ζk =
(

uk1
∂

∂uk2
− uk2

∂

∂uk1

)
, (B.4)

which in the Poincaré coordinate can be written as

ζk =
(

yk1
∂

∂yk2
− yk2

∂

∂yk1

)
.
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Appendix C. Selberg zeta function

The Selberg zeta function associated with the quotient geometries we consider was first
introduced by Patterson [19] in the form of the Euler product. In terms of the length l of the
(primitive) closed geodesic and the eigenvalues {α1, . . . , αn} of the rotation matrix A, it is
given by

Z�(λ) =
∏

k1,...,kn�0

[
1 − α

k1
1 . . . αkn

n e−(k1+...+kn+λ)l
]
. (C.1)

This Selberg zeta function has also an interpretation as the dynamical zeta function for geodesic
flow on X = �\H

n+1 [31]. The matrix A describes the rotation of nearby closed geodesics
under the Poincaré once-return map Pγ . Elementary manipulations lead to

log Z�(λ) = −
∑
m�1

1

m

e−mλl

det(I − e−mlAm)
, (C.2)

with

det(I − e−ml
A

m) =
n∏

j=1

(
1 − αm

j e−ml
) = e−mln/2

∣∣ det
(
I − Pm

γ

)∣∣1/2
. (C.3)

Appendix D. Renormalized volume of BTZ

To renormalize the volume of the quotient space X, it is convenient first to cast the metric into
the Fefferman–Graham form with r = 1−s2/4

s
= sh ln 2

s
,

gX = s−2
{
ds2 + (1 + s2/4)2 du2 + (1 − s2/4)2 d�2

n−1

}
. (D.1)

The computation in dimensional regularization gives an exactly vanishing answer∫
dvolX = vol(M) ·

∫ 2

0
ds s−n−1 (1 − s2/4)n−1 (1 + s2/4) = 0. (D.2)

The cutoff or Hadamard regularization in the case n = even produces a different
renormalized volume. We present here the Riesz regularization [44] which produces, in
fewer steps, the same answer as Hadamard regularization. The trick is to insert sz to regularize
the divergence at s = 0 and analytically continue in z to obtain the result at z = 0∫

dvolX = vol(M) ·
∫ 2

0
ds sz−n−1 (1 − s2/4)n−1 (1 + s2/4)

= vol(M) · 1

2n+1−z
�(n)

z �(z/2 − n/2)

�(z/2 + n/2 + 1)
. (D.3)

When n = odd this clearly vanishes, consistent with the fact that the Euler characteristic
of M also vanishes because of the S1 factor. When n = even, the asymptotic behavior as
z → 0 is ∫

dvolX = (−1)n/2vol(M) · �(n)

2n
+ O(z), (D.4)

and one can read off a vanishing anomaly due to the absence of a log-term, consistent with
the vanishing Euler characteristic of the conformal boundary, and the renormalized volume

VX = (−1)n/2vol(M) · �(n)

2n
. (D.5)

In the specific case of the spinning BTZ3, the renormalized volume using this scheme is

VBTZ = −πl/2 = −π2r+ = −π2τ2. (D.6)

14



J. Phys. A: Math. Theor. 43 (2010) 205402 R Aros and D E Dı́az

References

[1] Maldacena J 1998 The large-N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys.
2 231–52 (arXiv:hep-th/9711200)

[2] Gubser S S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from non-critical string theory
Phys. Lett. B 428 105–14 (arXiv:hep-th/9802109)

[3] Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253–91 (arXiv:hep-th/9802150)
[4] Camporesi R 1990 Harmonic analysis and propagators on homogeneous spaces Phys. Rept. 196 1–134
[5] Dobrev V K 1999 Intertwining operator realization of the AdS/CFT correspondence Nucl. Phys. B 553 559–82

(arXiv:hep-th/9812194)
[6] Fefferman C and Graham C R 2007 The ambient metric arXiv:0710.0919
[7] McGreevy J 2009 Holographic duality with a view toward many-body physics arXiv:0909.0518
[8] Horowitz G T and Polchinski J 2006 Gauge gravity duality arXiv:gr-qc/0602037
[9] Banados M, Teitelboim C and Zanelli J 1992 The black hole in three-dimensional space-time Phys. Rev.

Lett. 69 1849–51 (arXiv:hep-th/9204099)
[10] Banados M, Henneaux M, Teitelboim C and Zanelli J 1993 Geometry of the (2+1) black hole Phys. Rev.

D 48 1506–25 (arXiv:gr-qc/9302012)
[11] Carlip S 1995 The (2+1)-dimensional black hole Class. Quantum Grav. 12 2853–80 (arXiv:gr-qc/9506079)
[12] Birmingham D, Sachs I and Sen S 2001 Exact results for the BTZ black hole Int. J. Mod. Phys. D 10 833–58

(arXiv:hep-th/0102155)
[13] Manin Y I and Marcolli M 2002 Holography principle and arithmetic of algebraic curves Adv. Theor. Math.

Phys. 5 617–50 (arXiv:hep-th/0201036)
[14] Gubser S S and Mitra I 2003 Double-trace operators and one-loop vacuum energy in AdS/CFT Phys. Rev.

D 67 064018 (arXiv:hep-th/0210093)
[15] Gubser S S and Klebanov I R 2003 A universal result on central charges in the presence of double-trace

deformations Nucl. Phys. B 656 23–36 (arXiv:hep-th/0212138)
[16] Hartman T and Rastelli L 2008 Double-trace deformations, mixed boundary conditions and functional

determinants in AdS/CFT J. High energy Phys. JHEP01(2008)019 (arXiv:hep-th/0602106)
[17] Diaz D E and Dorn H 2007 Partition functions and double-trace deformations in AdS/CFT J. High energy

Phys. JHEP05(2007)046 (arXiv:hep-th/0702163)
[18] Diaz D E 2009 Holographic formula for the determinant of the scattering operator in thermal AdS J. Phys. A:

Math. Gen. 42 365401 (arXiv:0812.2158)
[19] Patterson S J The Selberg zeta-function of a Kleinian group Number Theory, Trace Formulas, and Discrete

Groups: Symp. in Honor of Atle Selberg (Oslo, Norway, 1987) (New York: Academic) pp 409–42
[20] Denef F, Hartnoll S A and Sachdev S 2009 Quantum oscillations and black hole ringing arXiv:0908.1788
[21] Mann R B and Solodukhin S N 1997 Quantum scalar field on three-dimensional (BTZ) black hole instanton:

heat kernel, effective action and thermodynamics Phys. Rev. D 55 3622–32 (arXiv:hep-th/9609085)
[22] D’Hoker E and Phong D H 1986 Multiloop Amplitudes for the Bosonic Polyakov String Nucl. Phys. B 269 205
[23] Aminneborg S, Bengtsson I, Holst S and Peldan P 1996 Making anti-de Sitter black holes Class. Quantum

Grav. 13 2707–14 (arXiv:gr-qc/9604005)
[24] Aminneborg S, Bengtsson I, Brill D, Holst S and Peldan P 1998 Black holes and wormholes in 2+1 dimensions

Class. Quantum Grav. 15 627 (arXiv:gr-qc/9707036)
[25] Banados M, Gomberoff A and Martinez C 1998 Anti-de Sitter space and black holes Class. Quantum

Grav. 15 3575 (arXiv:hep-th/9805087)
[26] Krasnov K 2000 Holography and Riemann surfaces Adv. Theor. Math. Phys. 4 929–79 (arXiv:hep-th/0005106)
[27] Ratcliffe J G 1994 Foundations of Hyperbolic Manifolds (Berlin: Springer)
[28] Figueroa-O’Farrill J M, Madden O, Ross S F and Simon J 2004 Quotients of AdS(p+1) x S**q: causally

well-behaved spaces and black holes Phys. Rev. D 69 124026 (arXiv:hep-th/0402094)
[29] Figueroa-O’Farrill J M and Simon J 2004 Supersymmetric Kaluza–Klein reductions of AdS backgrounds Adv.

Theor. Math. Phys. 8 217–317 (arXiv:hep-th/0401206)
[30] Banados M 1998 Constant curvature black holes Phys. Rev. D 57 1068–72 (arXiv:gr-qc/9703040)
[31] Perry P and Williams F 2003 Selberg zeta function and trace formula for the BTZ black hole Int. J. Pure Appl.

Math. 9 1–21
[32] Anker Ph J and Ostellari P 2003 The heat kernel on noncompact symmetric spaces Am. Math. Soc. Transl., Ser.

2 210 27–46
[33] Peter S J Patterson and Perry P A 2001 The divisor of Selberg’s zeta function for Kleinian groups Duke Math.

J 106 321–90
[34] Ray D B and Singer I M 1973 Analytic torsion for complex manifolds Ann. Math. 98 154–177

15

http://www.arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://www.arxiv.org/abs/hep-th/9802109
http://www.arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1016/0370-1573(90)90120-Q
http://dx.doi.org/10.1016/S0550-3213(99)00284-9
http://www.arxiv.org/abs/hep-th/9812194
http://www.arxiv.org/abs/0710.0919
http://www.arxiv.org/abs/0909.0518
http://www.arxiv.org/abs/gr-qc/0602037
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://www.arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://www.arxiv.org/abs/gr-qc/9302012
http://dx.doi.org/10.1088/0264-9381/12/12/005
http://www.arxiv.org/abs/gr-qc/9506079
http://dx.doi.org/10.1142/S0218271801001207
http://www.arxiv.org/abs/hep-th/0102155
http://www.arxiv.org/abs/hep-th/0201036
http://dx.doi.org/10.1103/PhysRevD.67.064018
http://www.arxiv.org/abs/hep-th/0210093
http://dx.doi.org/10.1016/S0550-3213(03)00056-7
http://www.arxiv.org/abs/hep-th/0212138
http://dx.doi.org/10.1088/1126-6708/2008/01/019
http://www.arxiv.org/abs/hep-th/0602106
http://dx.doi.org/10.1088/1126-6708/2007/05/046
http://www.arxiv.org/abs/hep-th/0702163
http://dx.doi.org/10.1088/1751-8113/42/36/365401
http://www.arxiv.org/abs/0812.2158
http://www.arxiv.org/abs/0908.1788
http://dx.doi.org/10.1103/PhysRevD.55.3622
http://www.arxiv.org/abs/hep-th/9609085
http://dx.doi.org/10.1016/0550-3213(86)90372-X
http://dx.doi.org/10.1088/0264-9381/13/10/010
http://www.arxiv.org/abs/gr-qc/9604005
http://dx.doi.org/10.1088/0264-9381/15/3/013
http://www.arxiv.org/abs/gr-qc/9707036
http://dx.doi.org/10.1088/0264-9381/15/11/018
http://www.arxiv.org/abs/hep-th/9805087
http://www.arxiv.org/abs/hep-th/0005106
http://dx.doi.org/10.1103/PhysRevD.69.124026
http://www.arxiv.org/abs/hep-th/0402094
http://www.arxiv.org/abs/hep-th/0401206
http://dx.doi.org/10.1103/PhysRevD.57.1068
http://www.arxiv.org/abs/gr-qc/9703040
http://dx.doi.org/10.2307/1970909


J. Phys. A: Math. Theor. 43 (2010) 205402 R Aros and D E Dı́az

[35] Polchinski J 1986 Evaluation of the one loop string path integral Commun. Math. Phys. 104 37
[36] Diaz D E 2008 Polyakov formulas for GJMS operators from AdS/CFT J. High energy Phys. JHEP07(2008)103

(arXiv:0803.0571)
[37] Denef F, Hartnoll S A and Sachdev S 2009 Black hole determinants and quasinormal modes arXiv:0908.2657
[38] Dowker J S 1995 Functional determinants on Moebius corners arXiv:hep-th/9510020
[39] Liu H and Tseytlin A A 1999 On four-point functions in the CFT/AdS correspondence Phys. Rev. D 59 086002

(arXiv:hep-th/9807097)
[40] Liu H 1999 Scattering in anti-de Sitter space and operator product expansion Phys. Rev. D 60 106005

(arXiv:hep-th/9811152)
[41] Friedman E and Ruijsenaars S 2004 Shintani–Barnes zeta and gamma functions Adv. Math. 187 362–95
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